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Abstract
Using the transfer matrix method, we study the transport properties through a magnetic field
modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector
potential, and the number of wells in a superlattice modify the transmission remarkably. The
angular dependent transmission is blocked by the magnetic vector potential because of the
appearance of the evanescent states at certain incident angles, and the region of Klein tunneling
shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The
magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier,
the number of wells, and the strength of the modulated magnetic field.

1. Introduction

Graphene and graphene-based microstructures have recently
attracted strong interest for potential nano-electronic applica-
tions due to their excellent carrier transport properties [1–4].
Graphene has a honeycomb lattice of carbon atoms. The quasi-
particles in graphene have a band structure in which electron
and hole bands touch at two points in the Brillouin zone [5, 6].
At these Dirac points, the quasiparticles obey the massless
Dirac equation, which leads to a linear dispersion relation
εk = vk (with a characteristic velocity v ≈ 106 m s−1).
The presence of such quasiparticles in graphene can provide
us with an experimental test for the Klein paradox [4]. Klein
tunneling predicts that the electron can pass through the high
potential barrier to approach perfect transmission in contrast
to conventional nonrelativistic tunneling where the transmis-
sion probability exponentially decays with increasing barrier
height [7–9].

Several graphene-based devices have been designed and
their transport properties studied. In double barrier (well)
graphene resonant tunneling structures [10], the massless
charge carriers can be confined by means of electrostatic
potential, due to the wavevector dependent suppression of the
electron–hole conversion at the potential barriers. Electron
states in the wells and hole states in the barriers give rise
to resonant features, which strongly influence the ballistic
conductance. Another interesting structure is a graphene
superlattice [11]. The angularly averaged conductivities in

a graphene superlattice can be controlled by changing the
structure parameters even if Klein tunneling exists.

It was found very recently that a new phenomenon appears
in a graphene structure with magnetic barriers [12–14]. The
Landau levels broaden into bands and the level width oscillates
with the magnetic field. The Dirac fermions can transmit
perfectly through a classically forbidden region while confined
by the magnetic barrier. For a graphene monolayer system
modulated by two ferromagnetic electrodes, the transmission
can be blocked by the magnetic–electric barrier, resulting in
a tremendous magnetoresistance ratio [15]. However, the
effects of magnetic field modulation on the graphene multiple
quantum wells or superlattice have not been investigated.
In this work, we explore the transport properties of the
graphene superlattice under the modulation of the magnetic
field. Different transmission properties and conductivity are
presented with the magnetic field modulation.

2. Model and method

The system under consideration is a monolayer graphene
superlattice. The schematic potential profiles for the double
barriers and superlattice are shown in figures 1(a) and (b). The
growth direction is taken as the x axis, which is termed the
superlattice axis. The magnetic field is applied along the z
direction perpendicular to the graphene (x , y) plane. In this
paper, we consider a series of magnetic δ-function barriers that
alternate in sign. This model can be realized experimentally
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Figure 1. Potential profile of quasiparticle transport in the monolayer
graphene superlattice (a) with double barriers (one well) and (b) with
(n − 1)/2 barriers ((n − 3)/2 wells).

by depositing ferromagnetic strips on top of a graphene layer
or putting the graphene layer on a periodically structured
substrate [16]. Within the Landau gauge, the vector potential
A(x) is a periodic array of step functions. A square shaped
barrier potential with height U0 can be taken for the electric
potential created by either gate. Due to the difference in Fermi
energy and band structure between two monolayer graphene
strips, the potential profile of the system is a multiple quantum
well (barrier) structure, given by

V (x) =
{

U0, in barrier,

0, in well.
(1)

We consider the monolayer graphene within the single electron
approximation; the low energy excitations are described by the
Dirac-type equation

[vFσ · (p + eA) + Vxσ0]� = E�, (2)

where vF ≈ 0.86 × 106 m s−1 is the Fermi velocity of the
structure, σ is the Pauli matrix, p = (px, py) is the electron
momentum, A is the vector potential with the form A =
[0, Ay, 0], and σ0 is the 2 × 2 unit matrix.

Because the system in our model is homogeneous along
the y direction, the transverse wavevector ky is conserved. The
solution of equation (2) for a given incident energy E can be
written as

�w = eiky y

[
ai e

ikx x

(
1

kx +iky

E

)
+ bi e

−ikx x

(
1

−kx +iky

E

)]
(3)

in the well and

�b = eiky y

[
ci e

ikx x

(
1

kx +iq
(E−U0)

)
+ di e

−ikx x

(
1

−kx +iq
(E−U0)

)]
(4)

in the barrier. Here, q = ky + Ay , and kx is the longitudinal
wavevector satisfying

k2
x + (ky + Ay)

2 = (E − U0)
2. (5)

Using the continuity of the wavefunction at the boundaries and
the transfer matrix method, the coefficients in equations (3)
and (4) can be solved, and the transmission probability can be
calculated T = T (E, ky).

Figure 2. Transmission probability of electrons through double
barrier (single well) structures as a function of the incident angle
with U0 = 2E0 (a) and U0 = 15E0 (b). EF = 10E0; solid, dashed,
and dotted lines correspond to B = 0, 2B0, and 5B0, respectively.

Based on the Landauer–Büttiker conductance for-
mula [17], the ballistic conductance in this system can then
be written as

G(EF) = (4e2/h)

∫ EF

−EF

T (EF, ky)
dky

2π/L y
(6)

= G0

∫ π/2

−π/2
T (EF, EF sin φ) cos φ dφ, (7)

where L y � L is the sample size along the y direction, φ is the
incident angle relative to the x direction, φ = arccos(kx/EF),
and G0 = 2e2 EF L y/(πh) is taken as the conductance unit.

3. Results and analysis

In the present model, the strength of the local magnetic field,
lB = √

h̄/eB, and the energy, E0 = h̄vF/ lB , are taken as the
units of the length and energy, respectively. For a realistic value
B0 = 0.1 T, we have l0 = 811 Å and E0 = 7.0 meV [15]. In
the following numerical calculation, the widths of the barriers
and the wells are set at 1. The incident energy is fixed at
E = 10E0, the magnetic field B is taken as 0, 2B0, or 5B0

for different transmission properties.
We first study the double barrier (one well) structure.

Figures 2(a) and (b) show the transmission versus the incident
angle with different magnetic fields. Perfect transport appears
very clearly for the case of normal incidence, which is Klein
tunneling. Increasing the height of the barrier, the region
of resonant tunneling decreases. When the magnetic field is
applied, we can see from figures 2(a) and (b) that the location
of the transmission peak with a finite width changes from
ky = 0 to ky = −B (here B = Ay). The shape of
the transmission curve shifts left and the incident direction
at which Klein tunneling occurs changes with the magnetic
field; as a result the transmission is no longer symmetric about
the incident angle. This can be understood as follows. From
equation (5) we can see that when the magnetic vector potential
and the electrostatic barrier satisfy |ky + B| > |E − U0|, the
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Figure 3. Transmission probability of electrons through three-well structures with U0 = 2E0 ((a), (c), and (e)) and U0 = 15E0 ((b), (d), and
(f)). The magnetic field B = 0 for (a) and (b), B = 2B0 for (c) and (d), and B = 5B0 for (e) and (f). EF = 10E0.

Figure 4. Transmission probability T of electrons through ten-well structures with U0 = 2E0 ((a), (c), and (e)) and U0 = 15E0 ((b), (d), and
(f)). The magnetic field B = 0 for (a) and (b), B = 2B0 for (c) and (d), and B = 5B0 for (e) and (f). EF = 10E0.

evanescent states appear in the magnetic field regions and the
transmission is generally weak as the decaying length of the
evanescent states is shorter than the vector potential width; as a
result, the transmission is blocked by the magnetic field when
the incident angle exceeds a critical value.

The transmission properties for the graphene superlattice
with three wells are plotted in figure 3. The electrons reflect
and transmit through the interface of the barrier and the well,
and compared with the case of a single well, more conductivity
peaks appear with increasing well number. The number of
wells plays an important role in anisotropic transmission even
for the graphene superlattice. The curve of the transmission

shifts to the left by modulation of the magnetic field. Because
the propagating states only appear in the magnetic vector
potential regions |ky + B| < |EF −U0|, when the Fermi energy
EF is bigger than the electrostatic barrier U0, that means

U0 − EF − B < ky < EF − U0 − B. (8)

We can see from figures 3(a), (c), and (e) that, with the
applied magnetic field increasing, the positive critical value
of the incident angle becomes small and the region of
electron tunneling shifts to the left. On the other hand, the
negative critical angle is determined by competition between
the magnetic vector potential and the electrostatic barrier
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Figure 5. Conductivity as a function of the Fermi energy EF for
three-well structures with U0 = 2E0 (a) and U0 = 15E0 (b). Solid,
dashed, and dotted lines corresponding to B = 0, 2B0, and 5B0,
respectively.

U0 − EF − B . For example, with U0 = 2E0, B = 5B0

in figure 3(e), transmission is forbidden when the incident
angle exceeds the positive critical angle φ = 0.1π or is
below another critical negative value φ = −0.4π . When
the magnetic vector potential and the electrostatic barrier
have the same values, −EF < ky in equation (8) (see
figure 3(c)) the transmission appears for all negative incident
angles. But for the case of U0 > E , electron tunneling
through the electrostatic barrier acts as the dominated transport
process. From figures 3(b), (d), and (f) it is found that
the higher electrostatic barrier holds back electron transport
through the structure, but in regions of negative incident
angle the applied magnetic barrier improves it and widens
the tunneling spectrum. The angular dependent transmission

in a ten-well graphene superlattice is also calculated and
the results are shown in figure 4. Because the electrons
experience a longer well–barrier interface, more reflection and
transmission happen. Compares with the case of the three-
well structure, the magnetic barrier does not modify the region
of the transmission, but increases the number of transmission
peaks.

The angular averaged conductivities are related to the
well (barrier) structure of the graphene superlattice. We
calculated the angular averaged conductivities in a three-well
superlattice with different magnetic fields and the results are
plotted in figure 5. For the case of U0 = 2E0 we can see
that, without the magnetic field modulation, the conductivity
exhibits oscillatory behavior but decreases when the Fermi
energy is less than the electrostatic barrier (EF < U0) and
then increases when the Fermi energy increases. When the
Fermi energy equals the electrostatic barrier, from equation (5),
k2

x + (ky + Ay)
2 = 0, transmission is forbidden and the angular

averaged conductivity is zero. With the magnetic field applied,
the oscillation of the angular averaged conductivities becomes
stronger but with a small magnitude oscillation. The magnitude
and period of the oscillation depend sensitively on the magnetic
field. The magnetic vector potential quickens the oscillatory
frequency of the conductivities. It is interesting to note that
the angular averaged conductivities are completely compressed
when the Fermi energy is smaller than the magnetic field. In
contrast, for a higher electrostatic barrier, i.e. U0 = 15E0 in
figure 5(b), the angular averaged conductivities decrease with
oscillation as the Fermi energy increases, and then become
zero when the Fermi energy equals the electrostatic barrier and
then increases again. When a magnetic field was applied, the
amplitude of the oscillation became small.

Now we discuss the effect of the magnetic field on the
conductivities in graphene superlattices with different well
numbers. Figure 6 shows conductivity as a function of the

Figure 6. Conductivity as a function of the Fermi energy with different barrier heights and magnetic fields. Solid, dashed, and dotted lines
correspond to one-, three-, and ten-well structures, respectively.
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Fermi energy EF with various numbers of wells. The solid line,
dashed line, and dotted line correspond to the cases with one,
three, and ten wells, respectively. U0 = 2E0 for figures 6(a)
and (c) and U0 = 15E0 for figures 6(b) and (d). The
electrostatic potential clearly modifies the conductivity. The
oscillation period does not change, the oscillation magnitudes
are tuned largely with the increase in well number. Comparing
figures 6(a) and (c), we can see that the oscillation becomes
quicker and the magnitude becomes wider because of the
magnetic field not only for the case of the one-well structure
but also for the ten-well superlattice. As to the higher
electrostatic potential, in figures 6(b) and (d) the behavior of
the conductivities varies in a more complicated way under
the applied magnetic field. The magnitude and period of
oscillation depend sensitively on the electrostatic barrier and
the modulation of the magnetic field.

4. Summary

In summary, based on the transfer matrix method we have
investigated the angle dependent transmission and the angle
averaged conductivities through graphene superlattices under
modulation of the magnetic field. It is found that the
transmission probability is directly related to the number
of the wells and the height of the potential, even if Klein
tunneling exists in the graphene structure. The magnetic vector
potential modulation blocks electron transport and shifts the
region of Klein tunneling. The angle averaged conductivities
show oscillatory behavior with increasing well number. As a
function of the Fermi energy, the conductivities oscillate and
decrease to zero when the Fermi energy equals the electrostatic
barrier and then increase again with increasing Fermi energy.
Thus, the transport properties in a graphene superlattice can be
controlled by the magnetic vector potential and the electrostatic
barrier.
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